

STRATEGIES WEEK

Izola, Slovenija

Izola, Slovenia 16. – 20. september 2024 16 – 20 September 2024

Consultation within TSG 3: Construction Activities in the Sea and on the Seashore and Achieving good environmental status of the Sea

GEOLOGY OF THE SLOVENIAN COAST

Kaja Šušmelj, University of Ljubljana, Faculty of Natural Sciences and Engineering, Department of Geology

Geology overview

- Cretaceous and Palaeocene-Eocene limestones (oldest)
- Eocene flysch
- Pliocene-Quaternary marine sediments (youngest)

Structural geology of the area

- Mesozoic: Adriatic-Dinaric carbonate platform
- Palaeogene: the platform disintegrated, the area deepened and a deep foreland basin was formed flysch formation
- Miocene-today: Istria-Friuli underthrust zone
 - Segmentation of the Adria microplate → Padan and Adriatic part
 - Underthrusting of the Padanian part beneath the External Dinarides

Source: Placer et al., 2010

Fig. 5. Istria-Friuli Underthrust Zone. 1. Upper ductile horizon: flysch; 2. Platform carbonates; 3. Thrust faults: PE – Petrinje Thrust Fault, KA – Kastelec Thrust Fault, SC – Socerb Thrust Fault, PN – Palmanova Thrust Fault (local Črni Kal Thrust Fault, GG – Zanigrad Thrust Fault, HR – Hrastovlje Thrust Fault, KU – Kubed Thrust Fault, GR – Gračišće Thrust Fault, SO – Soćerga Thrust Fault, BU – Buzet Thrust Fault, SI – Simon Thrust Fault; 4. Secondary thrust faults of the Strunjan Structure: SK – Sv. Križ Thrust Fault; 5. Thrust Front of External Dinarides: BJ – Buje Fault; 6. Strike-slipe fault; 7. Normal fault; 8. Ba – Buje Anticline; 9. S – Strunjan Structure, T – Tinjan Structure; 10. Izola Tectonic Window; 11. Fig. 6 – Fig. 6 – Synthetic profile Umag – Kozina on Fig. 6; 12. Motorway.

Structural geology

Several thrust structures:

- Palmanova Thrust Fault
 - central structural element
- Strunjan Structure
 - Reverse thrust faults
 - Folds in Strunjan
 - Sv. Križ / Izola Thrust Fault
 - Simon (interlayered) Thrusts
 - Izola Anticline

Structures continue under the sea.

Alveolinic-numulitic limestone

- Outcroping in the Izola Anticline
- Foraminiferal limestone (singlecelled organisms)
- Formed in the shallow sea (Adriatic-Dinaric carbonate platform)
- Paleocene-Eocene

Alveolinic-numulitic limestone

- Karst features
 - Antronček cave
 - Sv. Peter shaft and Izola shaft
 - Submarine springs

Eocene flysch

- Alternating layers of marlstones and sandstones
- Sequences up to 500 m
- Formation:
 - Orogenesis and formation of a foreland basin → deep-sea environment
 - Sediment accumulation on continental shelfs
 - Gravitational mass flows
 - Gravitational gradation of the sediment

Eocene flysch

- Flysch cliffs
- Strunjan cliff
 - 80 m high
 - Highest cliff in the Adriatic Sea
- Hazard rockfall!
 - After heavy rainfall
 - Strong winds
 - Erosion by the sea
 - Temperature fluctuations → shrinking and stretching of rocks → rock breakdown
- Don't sunbathe under the Strunjan Cliff!

Seabed sediments

Pliocene-Pleistocene

- Several 100 m thick
- Continental and marine sediments
- Regression and transgression of the sea
- Earliest post-LGM transgressive deposits in the Gulf of Trieste dated to 11,211–11,316 cal yr BP

Holocene

- 0-24 m thick (3,2 m on average)
- Marine sediments with a lot of terrigene component

Source: Novak et al., 2020

Geomorphological forms

A

Antropogenic:

- Luka Koper
- Town marinas
- Anchor and chain marks
- shipwreck
- Archeological remains
- Sewer pipes
- Effects of mine blasting

Slika 14: DMR morskega dna.

Submarine sulphurous springs

- 12 pockmarks funnel-shaped depressions in the seabed sediment
- Formed by brakish fluid (not as salty as seawater but saltier than freshwater)
- Springs with warm (up to 31.2 °C) and highly sulphidic water (up to 42 mg/L)
- Recharge from
 - Karst plateau on the E or
 - limestones on the S (Croatian side, Buje Anticline)
- Sulphate reduction due to coal layers in the Liburnian formation
- Ecosystems at the outflows

Source: Šušmelj et al., 2024

Take home message

Slovenian coast hides many interesting geological features.

Consider the:

- hazard under the flysch cliffs
- possible karst cavities in the limestone
- (sulphorous) groundwater
- ecosystems on the seafloor.

Take into account the opinion of geologists when carrying out construction activities!

TEDEN SREDOZEMSKE OBALE IN MAKROREGIONALNIH STRATEGIJ

AND MACRO-REGIONAL **STRATEGIES WEEK**

Izola, Slovenija

Izola, Slovenia 16. – 20. september 2024 16 – 20 September 2024

Consultation within TSG 3:

Construction Activities in the Sea and on the Seashore and Achieving good environmental status of the Sea

HVALA! THANK YOU!

Kaja Šušmelj kaja.susmelj@ntf.uni-lj.si **University of Ljubljana**

Faculty of Natural Sciences and Engineering

Department of Geology

