AMOS

Aquaculture Monitoring Observatory System

Manolis Ntoumas – Institute of Oceanography mntou@hcmr.gr

Dr. George Chatzigeorgiou - Institute of Marine Biology, **Biotechnology and Aquaculture**

chatzigeorgiou@hcmr.gr

Dr. Katja Klun – National Institute of Biology

EUSAIR

katja.klun@nib.si

December 2020

AMOS: Introduction

Interrea

EUSAIR FACILITY POINT

ADRION

- An increasing demand of food fish
- Collapsing of wild fish stocks
- Increasing price of wild stocks

Source: FAO Report, Fish to 2030

AMOS: Introduction

- Increased production of farmed fish
- Lower cost

Interrea

EUSAIR FACILITY POMNT

- More efficiently
- Need of real-time access in environmental parameters

Source: Shepherd 2012

AMOS: Aquaculture Monitoring Observatory System

Aquaculture monitoring (status based on stakeholders)

- So far a number of commercial products are available
- With controversial results and accuracy
- Different designs- No homogeneity
- No data traceability
- No data access
- Limited data products

Main objective:

Developing a cost – effective observatory system, tailored to the needs of Aquacultures with remote access, real-time data and forecast capabilities.

AMOS: Strategy

- Analysis of the current status
- Detailed specifications of produced system
- Design of the new system architecture
- Implementation, laboratory testing and validation
- Pilot application in real field conditions
- Extensive application in areas of interest

AMOS: Development procedure following EC technology development "guidelines"

The Technology Readiness Level (TRL) scale was originally defined by NASA in the 1990's as a means for measuring or indicating the maturity of a given technology. The TRL spans over nine levels as follows:

- TRL 1 Basic principles observed
- TRL 2 Technology concept formulated
- TRL 3 Experimental proof of concept
- TRL 4 Technology validated in lab
- TRL 5 Technology validated in relevant environment (industrially relevant environment in the case of key enabling technologies)
- TRL 6 Technology demonstrated in relevant environment (industrially relevant environment in the case of key enabling technologies)
- TRL 7 System prototype demonstration in operational environment
- TRL 8 System complete and qualified
- TRL 9 Actual system proven in operational environment (competitive manufacturing in the case of key enabling technologies; or in space)

Development reports submitted = TRL 3-4

Integration reports submitted =TRL 5

Testing reports submitted =TRL 6 - 8

Demonstrations reports submitted = TRL 7-9

AMOS: Operational scientific monitoring technologies

AMOS: Adoption of scientific Be

Ucean Best Practices System

Our Vision

To have agreed and broadly adopted methods across ocean research, operations and applications.

that has repeatedly produced superior results relative to other methodologies with the same objective; to be fully elevated to a best practice, a promising method will have been adopted and employed by multiple organizations.

The OBPS is a global, sustained system comprising technological solutions and community approaches to enhance management of methods as well as support the development of ocean best practices.

Handbook of best practices

This handbook collects the "best practices" in all phases of the system covering the entire infrastructural chain of data acquisition. It includes recommendations on how to produce high quality data aiming towards common methodologies and protocols within the FixO3 network.

A work led by: L. Coppola, M. Ntoumas, R. Bozzano, M. Bensi, S. Hartman, M. Charcos Llorens, J. Craig

Contributors: JF. Rolin, G. Giovanetti, D. Cano, J. Karstensen, A. Cianca, D. Toma, C. Stasch, S. Pensieri, V. Cardin, A. Tengberg, G. Petihakis, L. Cristini

June 2016

This work has received funding from the European Union Seventh Framework Programme under grant agreement n. 312463, FixO3.

AMOS: Design of the new system architecture

- System build up (housing, power, processing unit, etc)
- Sensors specifications and integration
- Communication (bidirectional RT)
- Data storage and transmission
- Adjustability for deployments

AMOS: New technologies to allow extended use

Advantages of modern IoT systems:

- Multiple modular channels of communication for hardware
- Low cost, modular sensor hardware with standardized interfaces
- Large community developing open source software and firmware

Advantages of modern Cloud infrastructures:

- High level of scalability
- High level of availability
- Modular architecture design
- Lower cost of maintenance

AMOS validation/calibration experiments

Perform calibration experiments and laboratory validation for the products developed in AMOS.

- The general challenges and further developmental needs for the detailed characterization in terms of accuracy and reliability of the project products will be investigated and documented.
- 1. Definitions of Test Parameters
 - Accuracy
 - Bias
 - Precision
 - Reliability
 - Range
- 2. Experimental approach/methodology
 - Reference material/equipment
- 3. Laboratory tests
 - Description
 - Results

Fully documented procedure
Direct link with

data quality

AMOS demonstrations

POSEIDON SYSTEM The POSEIDON system, an integrated observing infrastructure at the Eastern Mediterranean as contribution to the European Ocean Observing System

Several obs and technology nodes

•1]]]1•:

MBBC

IØABBYK

The observing system, which is composed by a network of moored buoys, two underwater gliders, a ferrybox system, a cabled observatory, a fleet of Argo floats, an HF radar system and a repeated cruises based ecosystem monitoring program

Pilot aquaculture farm

•A pilot aquaculture net pen cage farm since 2000

•16 rectangular cages 6×6 m and 4 circular cages of 12-m diameter •Five cultured species

AMOS demonstrations

SB

E1-N

Argo

profi

HCB

PB,

E1-N

PB HCM

Aqua facili

PB

AB,

E1-N HCE

E1-N

PFB

Platform	Field of application	User type	User name	Country	Project	TNA name	Year
SB, PCL	pH sensor	RI/ Industry	Univ. de Las Palmas de Gran Canaria/ sensorLab	Spain	JERICO (EU FP7)	MEDACID	2013-2014
E1-M3A (R/V visits)	winch for small boats	RI	HCMR	Greece	PERSEUS (EU FP7)	N/A	2013-2015
PCL	O2, Fluorescence, Turbidity	RI	HCMR, CNR	Italy	JERICO (EU FP7)	TOFU	2013-2016

Technology demonstration and scientific analysis

TRL8:The final product in its final configuration is successfully demonstrated through test and analysis for its intended operational environment and platform.

TRL9: The fi	al product is successfully operat	ted in an actual
mission.		

PFB	pH, pCO2 sensors	KI	NIVA	Norway	Jerico Next (EU FP7)	Carbonas	2017-
PCO	Magnetometer	RI	INGV	Italy	N/A	N/A	2018-
HCB, PCL	Phytoplankton fluorescence	RI	MIO, FMI	France, Finland	Jerico Next (EU FP7)	FluorMed-1	2018-
НСВ	Passive filtering system for microplastics	RI	Univ. of Aveiro	Portugal	Jerico Next (EU FP7)	Microplastox	2018-

Seasonal pH variability in the Saronikos Gulf: A year-study using a new photometric pH sensor

Melchor González-Dávila ª ♀ ⊠, J. Magdalena Santana-Casiano ª ⊠, George Petihakis ^b ⊠, Manolis Ntoumas ^b ⊠, Miguel Suárez de Tangil º ⊠, Evangelia Krasakopoulou ^{b, d} ⊠

Show more 🥆

https://doi.org/10.1016/j.jmarsys.2016.03.007

Get rights and content

Open Access Article

5-2016

017

17

17

Methods and Best Practice to Intercompare Dissolved Oxygen Sensors and Fluorometers/Turbidimeters for Oceanographic Applications

by 🔃 Sara Pensieri 1.⁺ 🖾 💿 🔃 Roberto Bozzano 1, 🕛 M. Elisabetta Schiano 2, 🕛 Manolis Ntoumas 3, 🕐 Emmanouil Potiris 3, 🕐 Constantin Frangoulis 3, 🕐 Dimitrios Podaras 3 and 🕐 George Petihakis 3 💿

¹ National Research Council of Italy, Institute of Intelligent Systems for Automation, Genoa 16149, Italy

² National Research Council of Italy, Institute of Marine Science, Genoa, 16149, Italy

³ Hellenic Centre for Marine Research, Institute of Oceanography, Heraklion Crete, 71003, Greece

* Author to whom correspondence should be addressed.

Academic Editor: Russell Binions

Sensors 2016, 16(5), 702; https://doi.org/10.3390/s16050702

Received: 1 March 2016 / Revised: 23 April 2016 / Accepted: 6 May 2016 / Published: 17 May 2016

(This article belongs to the Special Issue Sensors for Environmental Monitoring 2016)

JERICO-NEXT TNA: CarbonAS pH dataset March-June 2018

Date	2018-03-18
Temporal extent	2018-03-18 -2018-06-18
Author(s)	King Andrew ¹ , Ntoumas Manolis ²
Affiliation(s)	1 : Norwegian Institute for Water Research 2 : Hellenic Centre for Marine Research
DOI	10.17882/62413
Publisher	SEANOE

AMOS scientific payload/ sensors

Parameter	Data frequency	Sensor availability
Temperature	Real time	Commercial available (COTS)
Salinity	Real time	COTS
Fluorescence	Real time	COTS
Dissolved oxygen	Real time	COTS
Colored dissolved organic matter (CDOM)	Real time	COTS
pH/ ppCo2	Real time	Limited
Turbidity	Real time	COTS
Sea currents	Real time	COTS
Meteo	Real time	COTS
Waves	Real time	Limited
Image systems	Real time	Limited
Passive samplers/chemical parameters e.g toxic microalgae	Analysis required	Limited

Physical parameters

- Biochemical parameters
- Meteo and waves
- Image analysis systems
- Camera payloads
- Acoustics payloads

Data set related to EU policy /directives RT data flow for the industry

(µatm)

AMOS Data products and outcomes

Fig. 1. Bathymetric map of Pagasitikos gulf (m), fish farm locations and model domain.

Journal of Marine Systems 94 (2012) S65-S77

	Contents lists available at SciVerse ScienceDirect	* 🕋
	Journal of Marine Systems	JOTENAL OF
ELSEVIER	journal homepage: www.elsevier.com/locate/jmarsys	SYSTEMS

Application of a complex ecosystem model to evaluate effects of finfish culture in Pagasitikos Gulf, Greece

G. Petihakis ^{a,*}, K. Tsiaras ^a, G. Triantafyllou ^a, G. Korres ^a, T.M. Tsagaraki ^{a,b}, M. Tsapakis ^a, P. Vavillis ^a, A. Pollani ^a, C. Frangoulis ^a

Plankton response to nutrient enrichment is maximized at intermediate distances from fish farms

Beyond the cage: Ecosystem modelling for impact evaluation in aquaculture

Tatiana M. Tsagaraki^{a,b,*}, George Petihakis^a, Kostas Tsiaras^{c,2}, George Triantafyllou^c, Manolis Tsapakis^a, Gerasimos Korres^c, George Kakagiannis^{d,3}, Constantin Frangoulis^a, Ioannis Karakassis^{b,1}

* Institute of Oceanography, Hellenic Centre for Marine Research, P.O. Box 2214, 71003, Heraklion, Greece

^b Marine Ecology Laboratory, Biology Department, University of Crete, Vasilika Vouton, 71049, Heraklion, Greece

^c Institute of Oceanography, Hellenic Centre for Marine Research, 46.7 Km Athens-Sounio Ave, Mavro Lithari, P.O. Box 712, 19013, Anavissos, Attika, Greece ^d Department of Marine Sciences, Aegean University, 81100, Mytilene, Lesvos, Greece

AMOS system operation

AMOS Consortium

Marine Research Institutes

specialized in ocean and aquaculture sciences and monitoring

Universities

 specialized in developing marine technology components and modules

Public Sector authorities

• policy oriented dissemination of the results

Private Sector

- specialized in developing marine technology components and modules
- industry oriented dissemination of the results

EU Member States	Non-EU Countries
Croatia	Albania
Greece	Bosnia and Herzegovina
Italy	Montenegro
Slovenia	Serbia
	North Macadonia

AMOS: a co-creation approach

ACADEMIC RESEARCH

- Marine Research Institutes: specialized in ocean and aquaculture sciences and monitoring
- Universities specialized in developing marine technology components and modules

SOCIETY

 Citizen and general public involvement through communication and dissemination of results

PRIVATE SECTOR

- specialized in developing marine
 technology components and modules
- industry oriented dissemination of the results
- co-creation approach for a targeted solution for a sustainable aquaculture

DECISION MAKERS

 Involvement of local, national and regional authorities and policy makers

AMOS and relative EU projects

2020-2024: JERICO S3 - Joint European Research Infrastructure of Coastal Observatories: Science, Service, Sustainability (EC H2020)

2020-2024: NAUTILOS - New Approach to Underwater Technologies for Innovative, Low-cost Ocean observation (EC H2020)

MINKE. Metrology for Integrated marine maNagement and Knowledge-transfer nEtwork 2021-2025: (EC H2020)

2017-2020: Regional Cooperation for the transnational ecosystem sustainable development

